N39-Acid Base

Henderson-Hasselbalch " $\mathrm{He}-\mathrm{Ha}$ "

Buffered Solutions

Buffer - A solution that resists a change in pH when either hydroxide ions or protons are added.

Buffered solutions contain either:

- A weak acid and its salt
- A weak base and its salt

Acid/Salt Buffering Pairs

The salt will contain the anion of the acid, and the cation of a strong base ($\mathrm{NaOH}, \mathrm{KOH}$)

Weak Acid	Formula of the acid	Example of a salt of the weak acid
Hydrofluoric	HF	$\mathrm{KF}-$ Potassium fluoride
Formic	HCOOH	KHCOO - Potassium formate
Benzoic	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	$\mathrm{NaC}_{6} \mathrm{H}_{5} \mathrm{COO}$ - Sodium benzoate
Acetic	$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{NaH}_{3} \mathrm{COO}$ - Sodium acetate
Carbonic	$\mathrm{H}_{2} \mathrm{CO}_{3}$	$\mathrm{NaHCO}_{3}-$ Sodium bicarbonate
Propanoic	$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$	$\mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$ - Sodium propanoate
Hydrocyanic	HCN	KCN - potassium cyanide

Base/Salt Buffering Pairs

The salt will contain the cation of the base, and the anion of a strong acid ($\mathrm{HCl}, \mathrm{HNO}_{3}$)

Weak Base	Formula of the base	Example of a salt of the weak acid
Ammonia	NH_{3}	$\mathrm{NH}_{4} \mathrm{Cl}$ - ammonium chloride
Methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	$\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$ - methylammonium chloride
Ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{NO}_{3}$ - ethylammonium nitrate
Aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Cl}$ - aniline hydrochloride
Pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NHCl}$ - pyridine hydrochloride

Calculate the $\left[\mathrm{H}^{+}\right]$in a solution that is 0.10 M in NaF and 0.20 M in HF. $\left(K_{\mathrm{a}}=7.2 \times 10^{-4}\right)$
(A) $7.2 \times 10^{-4} \mathrm{M}$

B 2.0 M
C $1.4 \times 10^{-3} \mathrm{M}$
D 0.20 M
E none of these

Calculate the $\left[\mathrm{H}^{+}\right]$in a solution that is 0.10 M in NaF and 0.20 M in HF. $\left(K_{\mathrm{a}}=7.2 \times 10^{-4}\right)$

A $7.2 \times 10^{-4} \mathrm{M}$
$\mathbf{H F} \leftrightarrow \mathbf{H}^{+}+\mathrm{F}^{-}$
B 2.0 M
C $1.4 \times 10^{-3} \mathrm{M}$
D 0.20 M

$$
K a=\frac{\left[\boldsymbol{H}^{+}\right]\left[F^{-}\right]}{\boldsymbol{H} \boldsymbol{F}}
$$

F- present
when you
start because of the salt!

E none of these

Calculate the $\left[\mathrm{H}^{+}\right]$in a solution that is 0.10 M in NaF and 0.20 M in HF. $\left(K_{\mathrm{a}}=7.2 \times 10^{-4}\right)$
(A) $7.2 \times 10^{-4} \mathrm{M}$

B 2.0 M

$$
7.2 \times \mathbf{1 0}^{-4}=\frac{\left[H^{+}\right][\mathbf{0 . 1 0}]}{[\mathbf{0 . 2]}} ;
$$

C $1.4 \times 10^{-3} \mathrm{M}$

$$
\left[H^{+}\right]=1.44 x 10^{-3} M
$$

E none of these

Titration of an Unbuffered Solution

Titration of a Buffered Solution

Comparing Results

Comparing Results

Unbuffered

Buffered

- In what ways are the graphs different?
- In what ways are the graphs similar?

Henderson-Hasselbalch Equation

A really helpful shortcut equation to find the pH or pOH of a buffered solution.

You could do ICE Tables but those can be really time consuming.

Henderson-Hasselbalch Equation

$$
\begin{aligned}
& p H=p K_{a}+\log \left(\frac{A^{-}}{H A}\right)=p K_{a}+\log \left(\frac{[\text { Base }]}{[\text { Acid }]}\right) \\
& p O H=p K_{b}+\log \left(\frac{B^{+}}{B}\right)=p K_{b}+\log \left(\frac{[\text { Acid }]}{[\text { Base }]}\right)
\end{aligned}
$$

$p K a=-\log (K a)$ $p K b=-\log (K b)$

The acids or bases may be conjugates from the salt!

Other ways to think about He-Ha

Acid with a buffer:

$$
p H=p K_{a}+\log \left(\frac{[\text { salt }]}{[\text { Acid }]}\right)=p K_{a}+\log \left(\frac{[\text { conj. Base }]}{[\text { Acid }]}\right)
$$

Base with a buffer:
$p O H=p K_{b}+\log \left(\frac{[\text { salt }]}{[\text { Base }]}\right)=p K b+\log \left(\frac{[\text { conj. Acid }]}{[\text { Base }]}\right)$

Calculate the $\left[\mathrm{H}^{+}\right]$in a solution that is 0.10 M in NaF and 0.20 M in HF. $\left(K_{\mathrm{a}}=7.2 \times 10^{-4}\right)$
(A) $7.2 \mathrm{E}^{-4} \mathrm{M}$

B 2.0 M
C $1.4 \mathrm{E}^{-3} \mathrm{M}$
(D) 0.20 M
(E) none of these

Calculate the $\left[\mathrm{H}^{+}\right]$in a solution that is 0.10 M in NaF and 0.20 M in HF. $\left(K_{\mathrm{a}}=7.2 \times 10^{-4}\right)$
(A) $7.2 \mathrm{E}^{-4} \mathrm{M}$

Acid solution with a salt added.

- HF = acid
- NaF = salt

The salt has the conjugate base of the acid.

- F^{-}

D 0.20 M
E none of these

$$
p H=p K a+\log \frac{[\text { Base }]}{[\text { Acid }]}
$$

Calculate the $\left[\mathrm{H}^{+}\right]$in a solution that is 0.10 M in NaF and 0.20 M in HF. $\left(K_{\mathrm{a}}=7.2 \times 10^{-4}\right)$
(A) $7.2 \mathrm{E}^{-4} \mathrm{M}$

$$
p H=p K a+\log \frac{[\text { Base }]}{[\text { Acid }]}
$$

B 2.0 M
(C) $1.4 \mathrm{E}^{-3} \mathrm{M}$
(D) 0.20 M
(E) none of these

$$
\begin{gathered}
p H=-\log \left[7.2 E^{-4}\right]+\log \frac{[0.1 M]}{[0.2 M]} \\
=2.84 \\
{\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}=10^{-2.84}=0.00144 \mathrm{M}}
\end{gathered}
$$

Another good equation

Rearrange your Law of Mass Action:

$$
\begin{gathered}
K a=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]} \rightarrow \quad\left[H^{+}\right]=K a \frac{[H A]}{\left[A^{-}\right]} \rightarrow=K a \frac{[\text { Acid }]}{[\text { conj.Base }]} \\
K b=\frac{\left[B H^{+}\right]\left[\mathrm{OH}^{-}\right]}{[B]} \rightarrow\left[\mathrm{OH}^{-}\right]=K b \frac{[B]}{\left[B H^{+}\right]} \rightarrow=K b \frac{[\text { Base }]}{[\text { conj. Acid }]}
\end{gathered}
$$

Suggestions...

Pick a method and stick to it. They all have pros and cons.

- Ice tables

Pro = familiar Con = takes forever, lots of steps

- He-Ha

> Pro = fast, on the AP eq. sheet $\quad \begin{aligned} & \text { Con } \text { Have to recognize to use it, } \\ & \text { not always solving for } \mathrm{pH}\end{aligned}$

- Rearranging Law of Mass Action

$$
\begin{aligned}
\text { Pro }=\text { simple } \quad \text { Con }= & \text { Have to recognize to use it, } \\
& \text { extra step to get to } \mathrm{pH} \text { or } \mathrm{pOH}
\end{aligned}
$$

Suggestions...

Make sure to practice ALL methods once in a while.
You never know which info they will give you...
You want to be able to solve any variety of problems!
YES it is fine if I used one method on a key and you used another method. No big deal.

Just make sure you are careful about rounding issues.

