<u>N39 – Acid Base</u>

Henderson-Hasselbalch "He-Ha"

Buffer - A solution that resists a change in pH when either hydroxide ions <u>or</u> protons are added.

Buffered solutions contain either:

- A weak acid and its salt
- A weak base and its salt

Acid/Salt Buffering Pairs

The salt will contain the anion of the acid, and the cation of a strong base (NaOH, KOH)

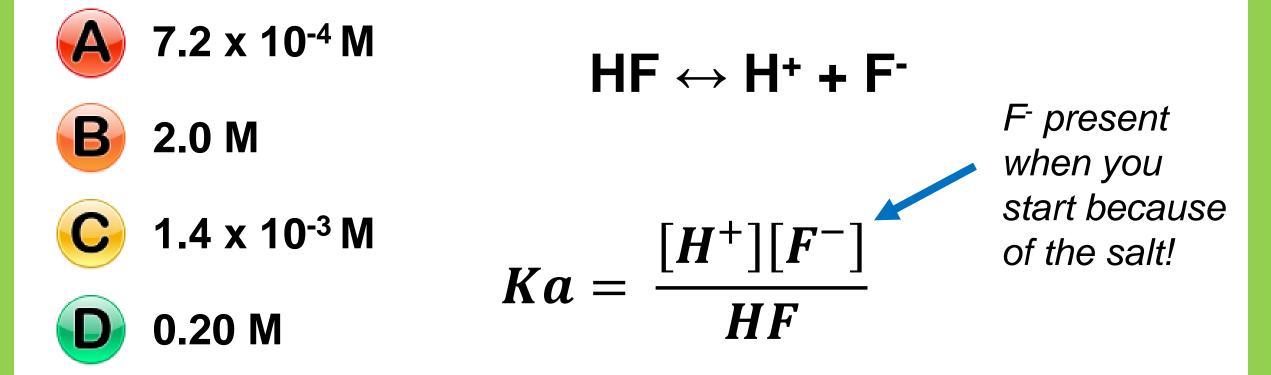
Weak Acid	Formula of the acid	Example of a salt of the weak acid
Hydrofluoric	HF	KF – Potassium fluoride
Formic	НСООН	KHCOO – Potassium formate
Benzoic	C ₆ H ₅ COOH	NaC ₆ H ₅ COO – Sodium benzoate
Acetic	CH ₃ COOH	NaH ₃ COO – Sodium acetate
Carbonic	H ₂ CO ₃	NaHCO ₃ - Sodium bicarbonate
Propanoic	HC ₃ H ₅ O ₂	NaC ₃ H ₅ O ₂ - Sodium propanoate
Hydrocyanic	HCN	KCN - potassium cyanide

Base/Salt Buffering Pairs

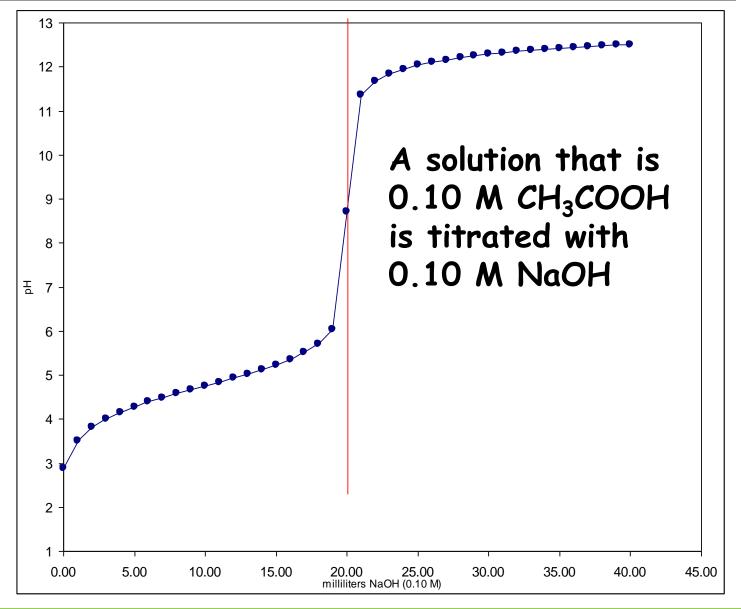
The salt will contain the cation of the base, and the anion of a strong acid (HCI, HNO₃)

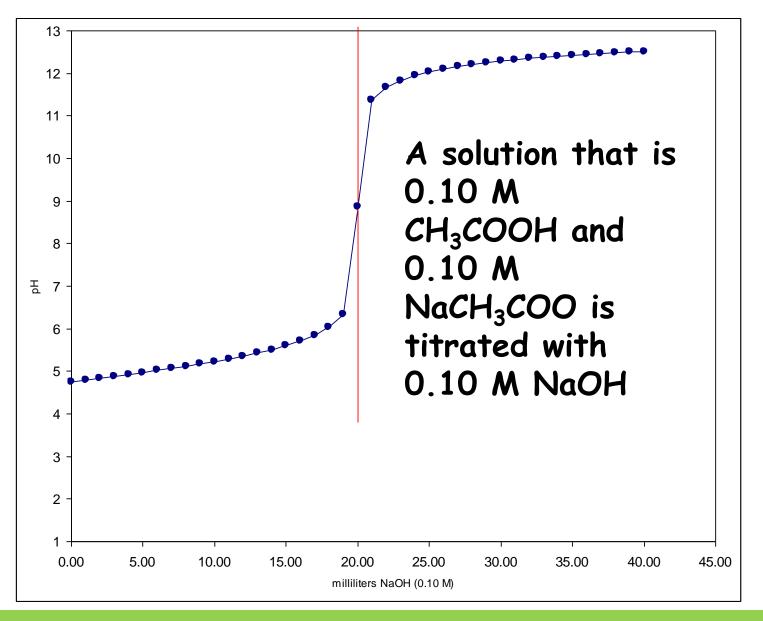
Weak Base	Formula of the base	Example of a salt of the weak acid
Ammonia	NH ₃	NH ₄ CI - ammonium chloride
Methylamine	CH ₃ NH ₂	CH ₃ NH ₃ CI – methylammonium chloride
Ethylamine	$C_2H_5NH_2$	C ₂ H ₅ NH ₃ NO ₃ - ethylammonium nitrate
Aniline	$C_6H_5NH_2$	C ₆ H ₅ NH ₃ CI – aniline hydrochloride
Pyridine	C_5H_5N	C ₅ H ₅ NHCI – pyridine hydrochloride

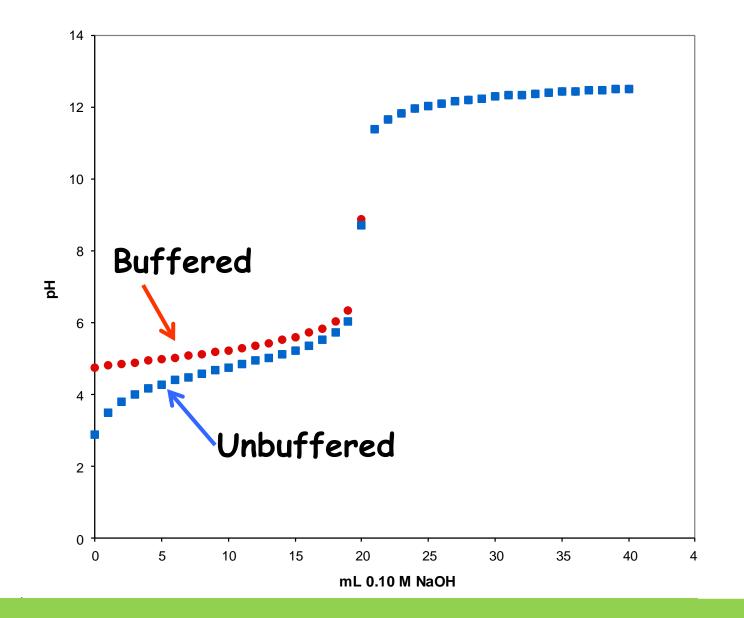
7.2 x 10⁻⁴ M

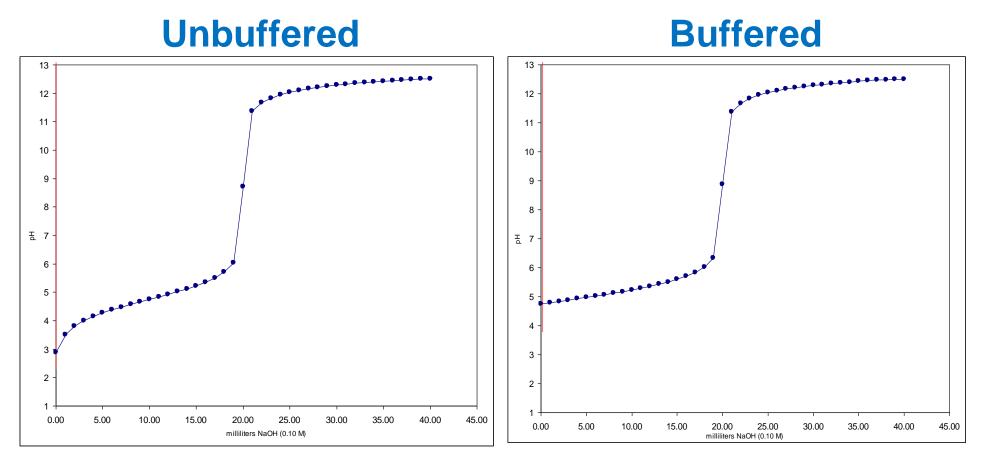


0.20 M


none of these


A 7.2 x 10⁻⁴ M 7.2 x 10⁻⁴ = $\frac{[H^+][0.10]}{[0.2]};$ 2.0 M B C 1.4 x 10⁻³ M $[H^+] = 1.44 \ x \ 10^{-3} M$ 0.20 M


Titration of an Unbuffered Solution


Titration of a Buffered Solution

Comparing Results

Comparing Results

- In what ways are the graphs different?
- In what ways are the graphs similar?

Henderson-Hasselbalch Equation

A really helpful shortcut equation to find the pH or pOH of a buffered solution.

You could do ICE Tables but those can be really time consuming.

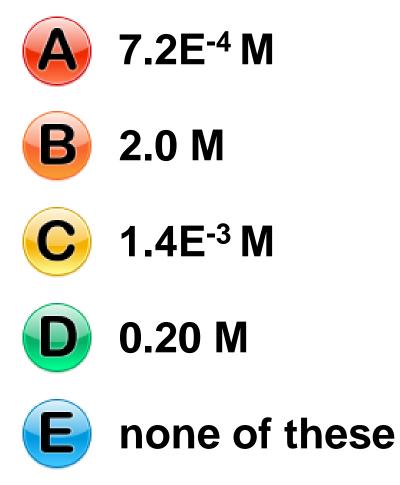
Henderson-Hasselbalch Equation

$$pH = pK_a + log\left(\frac{A^-}{HA}\right) = pK_a + log\left(\frac{[Base]}{[Acid]}\right)$$

$$pOH = pK_b + log\left(\frac{BH^+}{B}\right) = pK_b + log\left(\frac{[Acid]}{[Base]}\right)$$

pKa = -log(Ka)pKb = -log(Kb) Just like $pH = -log[H^+]$

The acids or bases may be conjugates from the salt!


Other ways to think about He-Ha

Acid with a buffer:

$$pH = pK_a + log\left(\frac{[salt]}{[Acid]}\right) = pK_a + log\left(\frac{[conj.Base]}{[Acid]}\right)$$

Base with a buffer:

$$pOH = pK_b + log\left(\frac{[salt]}{[Base]}\right) = pKb + log\left(\frac{[conj.Acid]}{[Base]}\right)$$

- Acid solution with a salt added.
 - HF = acid
 - NaF = salt
- The salt has the conjugate base of the acid.
 F⁻

) 0.20 M

2.0 M

7.2E⁻⁴ M

1.4E⁻³ M

$$pH = pKa + Log \frac{[Base]}{[Acid]};$$

 $pH = pKa + Log \frac{[Base]}{[Acid]};$ 7.2E⁻⁴ M **B** 2.0 M $pH = -log[7.2E^{-4}] + log\frac{[0.1M]}{[0.2M]}$ C 1.4E⁻³ M 0.20 M = 2.84 $[H^+] = 10^{-pH} = 10^{-2.84} = 0.00144M$ none of these

Another good equation

Rearrange your Law of Mass Action:

$$Ka = \frac{[H^+][A^-]}{[HA]} \rightarrow \qquad [H^+] = Ka \frac{[HA]}{[A^-]} \rightarrow = Ka \frac{[Acid]}{[conj. Base]}$$

$$Kb = \frac{[BH^+][OH^-]}{[B]} \rightarrow [OH^-] = Kb \frac{[B]}{[BH^+]} \rightarrow = Kb \frac{[Base]}{[conj.Acid]}$$

Suggestions...

Pick a method and stick to it. They all have pros and cons.

Ice tables

Pro = familiar Con = takes forever, lots of steps

• He-Ha

Pro = fast, on the Con = Have to recognize to use it, AP eq. sheet not always solving for pH

 Rearranging Law of Mass Action
 Pro = simple
 Con = Have to recognize to use it, extra step to get to pH or pOH

Suggestions...

Make sure to practice ALL methods once in a while. You never know which info they will give you... You want to be able to solve any variety of problems!

YES it is fine if I used one method on a key and you used another method. No big deal.

Just make sure you are careful about rounding issues.